While most spinal conditions do not require surgery, there are times when surgery is necessary. Implant systems utilizing specially designed spinal instrumentation are often used in these surgical procedures. The implants are used to facilitate fusion, correct deformities, and stabilize and strengthen the spine.
Conditions that often require instrumented fusion surgery include slippage of the spine (spondylolisthesis), chronic degenerative disc disease, traumatic fracture, and other forms of spinal instability including scoliosis.
Implants: What are they?
Most spinal implants are made of metals such as titanium, titanium-alloy or stainless steel; some are made of non-metallic compounds. They come in many different shapes and sizes to accommodate different patients of all ages.
Scientists and surgeons around the world are constantly working to develop and refine implants to improve patient outcomes. In recent years there have been huge advances, including the advent of hook, rod and screw systems that enable surgeons to 3-dimensionaly correct spinal deformities; the development of special plates and cages that help promote spinal fusion; and the creation of small but strong implants for children.
Spinal implants can be summarized into several groups:
What we use
We choose implants very carefully to ensure they are the best choice for the specific patient. For example, for patients who are slim, we choose “low profile” implants so they are not visible through the skin. We also use “low volume” implants because they reduce muscle irritation and cause less post-operative pain. In addition, we tend to use titanium implants as they are strong, light and, unlike stainless steel implants, can be used with MRIs. When suitable, we use radiolucent materials such as carbon fiber cages. Carbon-fiber implants cannot be seen on a scan but allow us to see if bone is forming and fusion is taking place.
The Future
Currently, scientists are developing bio-resorbable implants. Like other implants, these are used to facilitate fusion. However, after a year or so (when fusion should be complete) most implants are no longer needed but are left in the body. Bio-resorbable implants are designed to break down when they come in to contact with water (such as in the body). In 1 year, most decrease in size by 50% and are completely gone in 2-3 years. Thus the implant is present in the body while it is needed to promote fusion, and then it simply "fades-away" over a 12-36 month period. While few bio-resorbable implants are available yet, it is hoped that their development will be a significant step-forward in the coming few years.
Conclusion
In the past 20 years, there have been major breakthroughs in the development of spinal implants. The result is better treatment for patients. We utilize the implants that are most suitable for each individual patient. We are also involved in the research and development of new implants that will carry the field forward in the coming years.
Dr. Goldstein is recognized as one of the leading spine surgeons in New York. He is a Clinical Professore of Orthopedic Surgery and Neurosurgery at the NYU School of Medicine. His expertise is sought by television, media, and magazines. His practice is focused on surgical treatment:
Dr. Jeffrey Goldstein was recognized again in 2021 as one of America's Top Doctors .
Dr. Goldstein serves as Director of Education, Division of Spine Surgery and Director of the Spine Surgery Fellowship at NYU Langone Health (previously Medical Center Hospital for Joint Diseases.)
Patients from around the world travel to New York for the most advanced medical care. New York offers unrivalled facilities, accommodation, and infrastructure.